OPERATION HARDTACK - PROJECT 8.2

Thermal Radiation from High-Altitude Bursts

R. M. Brubaker, Project Officer
H. P. Gauvin J. P. Cahill
A. T. Stair, Jr.
D. J. Baker
Air Force Cambridge Research Laboratories
L. G. Hanscom Field
Bedford, MA

E. A. Jones

Cook Research Laborztnries
Morton Grove, IL
J. W. Carpenter

American Science and Engineering, Inc.
Cambridge. MA
6 October 1961

NOTICE:
This is an extract of WT-1648, Operation HARDTACK, Project 8.2.

Approved for public release: distribution is unlimited.

Extracted version prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000

1 September 1985

ABSTRACT

The objectlve was to Improve the bastic understanding of the physics of high-altitude nuclear detonations by measuring the thermal radiation from the high-allitude Shots Yucca, Orange, and Teak. Spectral irradiances (H_{λ}) obtained by distant airborne instrumentation are presented as a function of time in four wavelength bands: 0.3μ to $0.4 \mu, 0.4 \mu$ to $0.5 \mu, 0.5 \mu$ to 1μ, and 0.3μ to 3.6μ. The measurements are extrapolated to an assumed point source, and these generallzed results are discussed.

Shot Yucca, a balloonborne device detonated at 84,680 feet, radiated approximately like a black buoy, and, as expected, the thermal pulse had the characteristic shape of a sea level burst. Time to first maximum was approximately time to minimum was , and time to second maximum was The thermal pulse was of shorter duration than a similar low-altitude burst although the total thermal energy was about the same - 40 percent of the device yield.

Shot Orange, a device carried to 140,990 feet by a Redstone rocket, showed marked deviations from low-altitude bursts. Time to first maximum was the minimum, which was evident only in the 0.5μ to 1μ region, occurred at about ; and the primary thermal pulse was over in . There was a shift in the spectral distribution toward the infrared. In the 0.3μ to 1μ region the total thermal energy was 20 percent of the yield whereas an extrapolated figure for the 0.3μ to 3.6μ region was 45 percent of the yjald.

Shot Teak, a
device car ried to 250,380 feet by a Redstone rocket, had only one the rmal maximum occurring at The pulse then decayed

The। ower radiated at maximum, extrapolated to a point source, had a spectral distributior as follows: $0,3 \mu$ to 0.4μ, 0.4μ to 0.5μ, 0.5μ to $1 \mu \quad$ and 0.3μ to 3.6μ, By subtraction, an upper bound of watts radiated at wavelengthe greater than 1μ is obtalned. The pronounced shift of the radiation toward the infrared is apparent.

Simple ocaling laws are not sufficient to predict the thermal radiation from a high-altitude nuclear detonation. In particular the power radiated in the infrared exceeds by a large factor that expected from a black body of dimensions comparable with the viaible fireball. This implies the existence of some mechanism that is producing a greater proportion of infrared radiation than would be obtained using the equilibrium black body theory.

TABLE 1.1 HIGH-ALTITUDE BUHSTS AND RELATIVE AIRCRAFT POSITIONS

Shot	Yield	Altitude		$\mathrm{P}^{\prime} \mathrm{P}_{0}{ }^{*}$	$\rho / \rho_{0}{ }^{1}$	Date, Johnston luland Time	Alrcraft Position		
							Slant Range		
Yucca		km	$f t$						
	.	25.81	84,680	$2.21(-2) 1$	2.91 (-2)	28 Apr	11.3	24.5	
						1:40			
Orange		4297	140.990	2.03(-3)	2.17(-3)	11 Aus	9.3	138	
				2330					
Teak		76.31	250,380	$2.02(-5)$	$3.20(-5)$	31 Jul	9.3	137	
						2350			

- $P_{0}=101,325$ newtons $/ \mathrm{m}^{2}$.
$+D_{0}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$
1 Number in parentheses indicate the power of 10 by which each entry must be multiplied.

TABLE 1.2 PERCENTAGES OF TOTAL ENERGY RADIATED IN VARIOUS SPECTRAL REGIONS BY a PLAHCKIAN RAUIATOR AT DIFFERENT TEMPERATURES

Black Body Temperature	$\begin{gathered} \text { Far Ultraviolet } \\ \text { (FUV) } \\ 0.2 \mu \text { to } 0.25 \mu \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Near Ultraviolet" } \\ & \text { (NUV) } \\ & 0.3 \mu \text { to } 0.4 \mu \\ & \hline \end{aligned}$	VIbible (VIS) 0.4μ to 0.5μ	$\begin{gathered} \text { Infrared } \\ \text { (IR) } \\ 0.5 \mu \text { to } 1 \mu \\ \hline \end{gathered}$	$\begin{aligned} & \text { Bolometert } \\ & \text { (BOLO) } \\ & \lambda>1 \mu \end{aligned}$
-K					
1,000	-	-	-	0.035	35.
2,000	-	-	0.03	7.	69.
3,000	-	0.2	1.	27.	62.
4,000	0.03	1.8	5.	42.	47.
5,000	C 3	5.7	10.	47.	28.5
6,000	1	11.	13.	47.	24.
7,000	2	15.	16.	42.	16.5
8,000	5.	18.	16.	38.	13.
0,000	8.	21.	18.	32.	10.
10,000	10.5	21.0	15.2	27.5	8.0
11,000	11.5	20.9	13.9	23.9	6.7
12,000	13.3	20.4	13.0	20.8	5.4
13,000	14.8	19.3	11.8	17.7	4.1
14,000	15.6	18.0	10.8	15.4	3.4
15,000	16.0	17.1	9.7	13.3	3.1
20,000	15.3	11.7	5.8	7.1	1.3
25,000	12.5	7.6	3.5	4.3	0.74

- Experimentally, it was known that no radiation of wavelengthe 0.25μ to 0.3μ reached the alrcraft.
†The bolometer wavelength band was limited only by the transmisaion of quartz, ~ 80 percent from 0.2μ to 2.64μ and from 2.9μ to 3.6μ. The percentages presented are for energies at longer wavelengths than detectable by the dispersion units; $\lambda>1 \mu$.

Flgure A. 4 Vertical ozone diatribution.

Figure A. 5 Atmospheric tranamisaion, Shot Yucca.

Figure A. 6 Atmospheric transmission, Shot Orange.

Figure A. 7 Atmospheric transmission, Shot Teak.

Appendix B

BLACK BODY RADIATION AT VARIOUB TEMPERATURES

The apeciflc Intonsity of radiation from on object radiating as a black body at a tomperature T is given by Planck's law

$$
B_{\nu}(T)=\frac{2 \pi h \nu^{2}}{c^{2}} \frac{1}{\left(0^{h \nu / k T}-1\right)}
$$

Integration of the function over all frequencies ylelds the Stefan-Boltzmann equation

$$
B(T)=\sigma T^{4}
$$

Where: σ hes the value 5.6687×10^{-11} vatte $\mathrm{cm}^{-1}(\cdot \mathrm{~K})^{-4}$
U, for example, the object is a ephere of radius R, then the total power radiated is

$$
P=4 \pi R^{2} \sigma T^{4}
$$

and the fractional amount radiatod in a frequancy interval, v_{1} to $v_{1}\left(v_{2}>t_{1}\right)$ is diven by

$$
t_{1-2}=\left(\frac{15}{x^{4}}\right) \int_{x_{1}}^{x_{2}} \frac{x^{3} d x}{\left(e^{x}-1\right)}
$$

Where: $x=h \nu / k T$.
By meane of the tables In Reference 12, this Integral can be determined with a minimum amount of computathon.

In this particular case, the long wavelength tranomission characteriatica of the quartz window that was used in the bolometer required evaluation of thls fraction in the regions from 1.0μ to 2.64μ and 2.9μ to 3.6μ. Table B. 1 presents the values of $\times T(x=h \nu / k T, \times T=h c / k N$ for wavelengthe which pertain to the cutoffs of the diepersion unite and the bolometer. For any given tomperature the limits on the integral are determined, and hence, the fractional power in this interval.

TABLE B. 1 WAVELENGTHS IN MICRONS TRANSFORMED TO \times T (hc/kN

$\lambda(\mu)$	$\times T\left({ }^{\circ} \mathrm{K} \times 10^{4}\right)$
0.186	7.735
0.3	4.796
0.4	3.597
0.5	2.878
1.0	1.439
2.64	0.545
2.9	0.496
3.6	0.400

REFERENCES

1. "Handbook of Geophysics"; Revised Edition, 1500; Geophysics Research Directorate, Air Force Research Division, Air Research and Development Command, United States Air Force, L. G. Hanscom Field, Bedford, Massachusetts; The Macmillan Company, New York, New York, and Brett-Macmillan Led., Galt, Ontario; Unclassified.
2. F. H. Shelton; "Phenomenology of a High-Al \because Atomic Explosion"; SC-3363 (TR), August 1954; Sandia Corporation, Albuquerque, It ,
3. H. K. Sen; "A Phenomenological Theory of Intensity with Yield and Altitude"; AFCRC-TN-58-n.if: :ico; Secret Restricted Data. Research Cente:, Bedford, Massachusetts; Secret.
4. H.K. Sen and A. W. Guess; "The Role of Rediation In Snock Propagation with ApplicaHons to Altitude and Yleld Scaling of Nuclear Firebulle"; AFCRC-T'N-59-261, September 1959; Alr Force Cambridge Research Center, Bedford, Massa :husetts; Secret Restricted Data.
5. M. Annis and J.W. Cerpenter; "Estimate of Thermal Pulses from High Altitude Detonations"; ARA-M-6044, April 1958; Allied Research Associates, Inc., Boston, Massachusetts; Secret Restricted Data; Unpublished Private Communication.
6. H. L. Mayer; "Early History of High Altitude Nuclear Explosions"; AFSWC-TR-57-16, May 1957; Alr Force Special Weapons Center, Kirtland AFB, New Mexico; Secret Restricted Data.
7. D.E. Buttrey et al.; "Ultrahigh-Altitude Measurement Feasibility Study (Pre-Hardtack Report)"; AFSWC-TN-58-19, August 1958; Air Force Speclal Weapons Center, Kirtland AFB, New Mexico; Secret Restricted Data.
8. H. L. Brode and F. R. Gilmore; "Estimates of the Thermal Radiation from Nuclear Weapons Burst at High Altitudes"; RM-1938, September 1957; The RAND Corporation, Santa Monica, California; Secret Restricted Data.
9. H. L. Brode; "Theoretical Description of the Early Phases of the Fireball for a Very High Altitude Kiloton Explosion" (U); RM-2247, September 1958; The RAND Corporation, Santa Monica, Callfornia; Secret Formerly Restricted Data.
10. H. L. Brode; "Theoretical Description of the Early Phases of the Fireball for a Very High Altitude Megaton Explosion"(U); RM-2249, September 1959; The RAND Corporation, Santa Monica, California; Secret Formerly Restricted Data.
11. F.R. Gilmore; Private Communication 11 July 1958; The RAND Corporation, Santa Monica, California.
12. F. R. Gilmore; "A Table of the Planck Radiation Function and Its Integral" (U); RM-1743, July 1956; The RAND Corporation, Santa Monica, California; Unclassified.
13. P. M. McPherson et al.; "A Photodetecting Instrument with Flat Wavelength Response"; J. Opt. Soc. Am. 51, March 1961; Unclassified.
14. N. J. Kreidl and J. R. Hensler; "Gamma Radiation Insensitive Optical Glass"; J. Opt. Soc. Am. 47, 1957, Page 73; Unclassifled.
15. H.E. Stubbs and R.G. Phillips; "High-Speed Bolometer"; Rev. Sci. Instr. 31, 1960, Page 115; Unclassifled.
16. R.W. Hillendahl; "Characteristics of Thermal Radlations from Nuclear Weapons"; AFSWP-902, June 1959, Vol I; Armed Forces Speclal Weapons Project, Washington 25, D. C.; Secret Restricted Data.
17. R. L. Dresser et al.; "Thermal Flux and Albedo Measurements from Aircraft"; Project 5.7, Operation Redwing, WT-1333; Secret Formerly Restricted Data.
18. D. J. Baker and D.E. Thomas; "Nuclear Thermal Pulse Simulator"; Electronics 32, 1959, No. 44, Page 66; Unclassifled.
19. E. A. Jones; "Modification of RB-36 Aircraft for Use as Instrument Platforms and Fleld Measurement of Thermal Energy Resulting from the Detonation of Nuclear and Thermonuclear Devices During Operation Hardtack"; A FCRC-TR-59-298, December 1959; Air Force Cambridge Research Center, Bedford, Massachusetts; Secret Restricted Data.
20. J.W. Reed et al.; "Thermal Radiation from Low-Yleld Bursts"; Project 8.8, Operation Hardtack, ITR-1675, January 1959; Air Force Cambridge Research Center, Bedford, Massachusetss; Secret Restricted Data.
21. E.C.Y. Inn et al.; "Early-Time Spectra of Very-High-Altitude Nuclear Detonation" (U); Project 8.4, Operation Hardtack, WT-1650, June 1960; US Naval Radiological Defense Laboratory, San Francisco, California; Secret Restricted Data.
22. "Capabllities of Atomic Weapons"(U); Revised Edition, November 1957, TM-23200, OPNAV Instruction 03400.1B, AFL 136-1, NAVMC 1104 REV; Armed Forces Special Weapons Project, Washington 25, D.C.; Confidential. (Availible through publications channels of Army, Navy, and Alr Force.)
23. F. R. Gilmore and A. L. Latter; "Approximate Thermodynamics and Radiation Properties of Alr between 2 and 600 Volts" (U); RM-1617, January 1956; The RAND Corporation, Santa Monica, Callfornia; ASTIA Document AD-116592; Confidential.
24. F. Fussell and D. Barnes; "Growth of Fireball Radil at Very-High Altitudes"(U); Project 8.3, Operation Hardtack, WT-1649; Edgerton, Germeshausen and Grier, Boston, Massachusetts; Secret Formerly Restricted Data.
25. R. Zirkind; "Narrow-Band Infrared Spectral Irradiance of Very-High Altitude Bursts"(C); Project 8.5, Operation Hardtack, ITR-1651, October 1958; Bureau of Aeronautics, Department of the Navy, Washington, D.C.; Secret Restricted Data.
26. R.C. Jenkins et al.; "Spectral Irradiance History of the Three High Altitude Shots of Operation Hardtack"; AFSWP-1133, USNRDL-TR-333, NS081-001, March 1959; US Naval Radiological Defense Laboratory, San Francisco 24, Callfornia; Secret Restricted Data.
27. B. Kivel and K. Balley; "Tables of Radiation from High Temperature Air"; Research Report 21, December 1957; Avco Research Laboratory, Avco Manufacturing Corporation, Boston, Massachusetts; Unclassified.
28. K. Watanabe; "Ultraviolet Absorption Process in the Upper Atmosphere"; Advances In Geophysics, 1958, H. E. Landberg and J. Van Miegham, Editors; Academic Press, Inc., New York; Unclassified.
29. Friedman, Litchman, and Byram; "Photon Counter Measurements of Solar X-rays and Extreme Ultraviolet Light"; Phys. Rev. 83, 1951, Pages 1025-1030; Unclassified.
30. Tousey, Watanabe, and Purcell; "Measurements of Solar Extreme Ultraviolet and X-rays from Rockets by Means of a CA SO ${ }_{6}$: Mn Phosphor"; Phys. Rev. 83, 1951, Pages 792-797; Unclassified.
31. J. O. Vann; "An Operational Feasibility Study of an Atomic Weapon Test at or above 100,000 Feet" (U); AFSWC-TR-55-24, December 1955; A1r Force Special Weapons Center, Kirtland AFB, New Mexico; Secret.
32. Penndorf, Goldberg, and Lufkin; "Slant Visibllity"; Geophysics Research Paper, AFCRC No. 21, 1852; Alr Force Cambridge Resesrch Center, Bedford, Massachusetts; Unclassified.
33. Brunt and Kapur; "Quarterly Journal of the Royal Meteorological Soclety": 64, 1958, Page 510; Royal Metoorological Soclety, London; Unclasaified.
34. P. F. W. Gotz; "Ozone In the Atmoaphere"; Compendium of Meteorology, 1951, Pages え̄̄̄-291, T.F. Malone, Editor; American Meteorological Soclety, Boston, Massachusetts; Unclassified.
